Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We present the experimental finding of multiple simultaneous two-fold degeneracies in the spectrum of a Kerr oscillator subjected to a squeezing drive. This squeezing drive resulting from a three-wave mixing process, in combination with the Kerr interaction, creates an effective static two-well potential in the phase space rotating at half the frequency of the sinusoidal drive generating the squeezing. Remarkably, these degeneracies can be turned on-and-off on demand, as well as their number by simply adjusting the frequency of the squeezing drive. We find that when the detuning Δ between the frequency of the oscillator and the second subharmonic of the drive equals an even multiple of the Kerr coefficientK, , the oscillator displays exact, parity-protected, spectral degeneracies, insensitive to the drive amplitude. These degeneracies can be explained by the unusual destructive interference of tunnel paths in the classically forbidden region of the double well static effective potential that models our experiment. Exploiting this interference, we measure a peaked enhancement of the incoherent well-switching lifetime, thus creating a protected cat qubit in the ground state manifold of our oscillator. Our results illustrate the relationship between degeneracies and noise protection in a driven quantum system.more » « less
-
By applying a microwave drive to a specially designed Josephson circuit, we have realized a double-well model system: a Kerr oscillator submitted to a squeezing force. We have observed, for the first time, the spectroscopic fingerprint of a quantum double-well Hamiltonian when its barrier height is increased: a pairwise level kissing (coalescence) corresponding to the exponential reduction of tunnel splitting in the excited states as they sink under the barrier. The discrete levels in the wells also manifest themselves in the activation time across the barrier which, instead of increasing smoothly as a function of the barrier height, presents steps each time a pair of excited states is captured by the wells. This experiment illustrates the quantum regime of Arrhenius’s law, whose observation is made possible here by the unprecedented combination of low dissipation, time-resolved state control, 98.5% quantum nondemolition single shot measurement fidelity, and complete microwave control over all Hamiltonian parameters in the quantum regime. Direct applications to quantum computation and simulation are discussed. Published by the American Physical Society2024more » « less
-
Abstract Transmon qubits are the predominant element in circuit-based quantum information processing, such as existing quantum computers, due to their controllability and ease of engineering implementation. But more than qubits, transmons are multilevel nonlinear oscillators that can be used to investigate fundamental physics questions. Here, they are explored as simulators of excited state quantum phase transitions (ESQPTs), which are generalizations of quantum phase transitions to excited states. We show that the spectral kissing (coalescence of pairs of energy levels) experimentally observed in the effective Hamiltonian of a driven SNAIL-transmon is an ESQPT precursor. We explore the dynamical consequences of the ESQPT, which include the exponential growth of out-of-time-ordered correlators, followed by periodic revivals, and the slow evolution of the survival probability due to localization. These signatures of ESQPT are within reach for current superconducting circuits platforms and are of interest to experiments with cold atoms and ion traps.more » « less
An official website of the United States government
